Land Cover and Forest Type Classification by Values of Vegetation Indices and Forest Structure of Tropical Lowland Forests in Central Vietnam

Author:

Nguyen Trong Hung12ORCID,Nguyen The Dung13ORCID,Kappas Martin1

Affiliation:

1. Department of Cartography, GIS and Remote Sensing, Georg-August-Universität Göttingen, 37077 Göttingen, Germany

2. Ministry of Natural Resources and Environment, Hanoi, Vietnam

3. Vietnam National University of Forestry, Xuan Mai, Hanoi, Vietnam

Abstract

This paper aims to (i) optimize the application of multiple bands of satellite images for land cover classification by using random forest algorithms and (ii) assess correlations and regression of vegetation indices of a better-performed land cover classification image with vertical and horizontal structures of tropical lowland forests in Central Vietnam. In this study, we used Sentinel-2 and Landsat-8 to classify seven land cover classes of which three forest types were substratified as undisturbed, low disturbed, and disturbed forests where forest inventory of 90 plots, as ground-truth, was randomly sampled to measure forest tree parameters. A total of 3226 training points were sampled on seven land cover types. The performance of Landsat-8 showed out-of-bag error of 31.6%, overall accuracy of 68%, kappa of 67.5%, while Sentinel-2 showed out-of-bag error of 14.3% and overall accuracy of 85.7% and kappa of 83%. Ten vegetation indices of the better-performed image were extracted to find out (i) the correlation and regression of horizontal and vertical structures of trees and (ii) assess the variation values between ground-truthing plots and training sample plots in three forest types. The result of thettest on vegetation indices showed that six out of ten vegetation indices were significant atp<0.05. Seven vegetation indices had a correlation with the horizontal structure, but four vegetation indices, namely, Enhanced Vegetation Index, Perpendicular Vegetation Index, Difference Vegetation Index, and Transformed Normalized Difference Vegetation Index, had better correlationsr = 0.66, 0.65, 0.65, 0.63 and regression results were ofR2 = 0.44, 0.43, 0.43, and 0.40, respectively. The correlations of tree height werer = 0.46, 0.43, 0.43, and 0.49 and its regressions were ofR2 = 0.21, 0.19, 0.18, and 0.24, respectively. The results show the possibility of using random forest algorithm with Sentinel-2 in forest type classification in line with vegetation indices application.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Hindawi Limited

Subject

Nature and Landscape Conservation,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3