Light Deep Model for Pulmonary Nodule Detection from CT Scan Images for Mobile Devices

Author:

Masud Mehedi1ORCID,Muhammad Ghulam2ORCID,Hossain M. Shamim3ORCID,Alhumyani Hesham1,Alshamrani Sultan S.1,Cheikhrouhou Omar1,Ibrahim Saleh45

Affiliation:

1. College of Computers and Information Technology, Taif University, Taif 21974, Saudi Arabia

2. Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

3. Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

4. Electrical Engineering Department, Taif University, Saudi Arabia

5. Computer Engineering Department, Cairo University, Egypt

Abstract

The emergence of cognitive computing and big data analytics revolutionize the healthcare domain, more specifically in detecting cancer. Lung cancer is one of the major reasons for death worldwide. The pulmonary nodules in the lung can be cancerous after development. Early detection of the pulmonary nodules can lead to early treatment and a significant reduction of death. In this paper, we proposed an end-to-end convolutional neural network- (CNN-) based automatic pulmonary nodule detection and classification system. The proposed CNN architecture has only four convolutional layers and is, therefore, light in nature. Each convolutional layer consists of two consecutive convolutional blocks, a connector convolutional block, nonlinear activation functions after each block, and a pooling block. The experiments are carried out using the Lung Image Database Consortium (LIDC) database. From the LIDC database, 1279 sample images are selected of which 569 are noncancerous, 278 are benign, and the rest are malignant. The proposed system achieved 97.9% accuracy. Compared to other famous CNN architecture, the proposed architecture has much lesser flops and parameters and is thereby suitable for real-time medical image analysis.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3