Affiliation:
1. School of Economic and Management, Tongji University, Shanghai 200092, China
Abstract
Mathematical models are important methods in estimating epidemiological patterns of diseases and predicting the consequences of the spread of diseases. Investigation of risk factors of transportation modes and control of transportation exposures will help prevent disease transmission in the transportation system and protect people’s health. In this paper, a multimodal traffic distribution model is established to estimate the spreading of virus. The analysis is based on the empirical evidence learned from the real transportation network which connects Wuhan with other cities. We consider five mainstream travel modes, namely, auto mode, high-speed railway mode, common railway mode, coach mode, and flight mode. Logit model of economics is used to predict the distribution of trips and the corresponding diseases. The effectiveness of the model is verified with big data of the distribution of COVID-19 virus. We also conduct model-based tests to analyze the role of lockdown on different travel modes. Furthermore, sensitivity analysis is implemented, the results of which assist in policy-making for containing infection transmission through traffic.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献