Influence of Al Content on Degradation Behavior of Cu-Doped Mg-Al Alloys for Drill-Free Plugging Applications

Author:

Kang Li1,Shi Yixuan1,Luo Xiaoping1ORCID,Liu Baosheng1

Affiliation:

1. Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China

Abstract

Herein, we report low-cost and rare-earth-free Cu-doped Mg-Al alloys for drill-free plugging applications and present the influence of Al content on degradation behavior. The phase composition and microstructure of fabricated alloys were characterized by using a scanning electron microscope (SEM) and X-ray diffractometer (XRD). Also, degradation properties were investigated using hydrogen evolution tests and the electrochemical measurements. The results reveal that the Al content is directly related to the proportion of secondary phases, such as Mg2Cu, Mg17Al12, and MgAlCu. Moreover, the Mg17Al12 and MgAlCu phases are distributed at α-Mg grain boundaries, whereas the MgAlCu phase is distributed within the Mg matrix. Acceleration of degradation rate is found due to microgalvanic corrosion in Mg-xAl-2Cu (in wt.%, named as ACx2, x = 0, 3, 5, and 9) alloys. In this regard, Mg2Cu, Mg17Al12, and MgAlCu phases act as a microgalvanic cathode against anodic magnesium matrixes. As such, the degradation rate of ACx2 alloys in 3.5% NaCl solution is ranked from AC02, AC32, AC52, to AC92. In this context, the AC02 alloy shows the fastest degradation rate, 46 times higher than the AC92 alloy. This may provide a practical solution to develop good alternatives for drill-free plugging materials.

Funder

Natural Science Foundation of Shanxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference15 articles.

1. 8—applications: aerospace, automotive and other structural applications of magnesium;A. A. Luo

2. Magnesium: alloying;H. Westengen

3. Studies in the area of civil and mechanical engineering reported from wroclaw university of science & technology (the potential of slm technology for processing magnesium alloys in aerospace industry);Engineering-Civil and Mechanical Engineering;Chemicals & Chemistry,2020

4. Corrosion mechanisms of magnesium alloys;G. L. Song;Advanced Engineering Materials,2010

5. Characterization of the corrosion performances of as‐cast Mg–Al and Mg–Zn magnesium alloys with microarc oxidation coatings

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3