Noise Reduction for Modal Parameter Identification of the Measured FRFs Using the Modal Peak-Based Hankel-SVD Method

Author:

Zhu Tianxu1,Zang Chaoping1ORCID,Zhang Gengbei1

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

The measured frequency response functions (FRFs) in the modal test are usually contaminated with noise that significantly affects the modal parameter identification. In this paper, a modal peak-based Hankel-SVD (MPHSVD) method is proposed to eliminate the noise contaminated in the measured FRFs in order to improve the accuracy of the identification of modal parameters. This method is divided into four steps. Firstly, the measured FRF signal is transferred to the impulse response function (IRF), and the Hankel-SVD method that works better in the time domain rather than in the frequency domain is further applied for the decomposition of component signals. Secondly, the iteration of the component signal accumulation is conducted to select the component signals that cover the concerned modal features, but some component signals of the residue noise may also be selected. Thirdly, another iteration considering the narrow frequency bands near the modal peak frequencies is conducted to further eliminate the residue noise and get the noise-reduced FRF signal. Finally, the modal identification method is conducted on the noise-reduced FRF to extract the modal parameters. A simulation of the FRF of a flat plate artificially contaminated with the random Gaussian noise and the random harmonic noise is implemented to verify the proposed method. Afterwards, a modal test of a flat plate under the high-temperature condition was undertaken using scanning laser Doppler vibrometry (SLDV). The noise reduction and modal parameter identification were exploited to the measured FRFs. Results show that the reconstructed FRFs retained all of the modal features we concerned about after the noise elimination, and the modal parameters are precisely identified. It demonstrates the superiority and effectiveness of the approach.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3