Flexural Behavior of Precast Concrete Segmental Box-Girders with Dry Joints

Author:

Chai Shun1ORCID,Guo Tong2ORCID,Chen Zheheng3,Yang Jun1

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing 210096, China

2. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China

3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

Abstract

Precast concrete segmental (PCS) box-girders are widely used in bridge construction, while studies on flexural behaviors of PSC box-girders with dry joints are insufficient. Six large-scale PCS box-girders with dry joints were tested to failure under two-point loading in this study. Strain increments, tendon forces, deflections at mid-span, and cracks were recorded during the tests. Multiple factors were investigated with regards to their influence on flexural performance of girders. It is found that most specimens failed due to the excessive force in tendons, while the specimen with external tendons failed due to concrete compressive crushing. Larger shear span ratio resulted in greater increase in tendon force and concrete strain during loading and, accordingly, the lowest ultimate flexural capacity. Lower concrete strength resulted in larger increase in concrete strain and tendon force during loading and relatively smaller deflection at failure. For the specimen with four segments, a significant increase in tendon force and smaller deflections at failure was observed as compared with specimen 1, though the failure load was similar. Numerical simulation is further conducted, where it is found that the area of prestressed tendon and the number of joints have a significant influence on ultimate flexural bearing capacity and deflection; besides, deflection control standard of PCS girders should be stricter than that of the integral cast girder. The corbel joints, in general, show better ultimate performance than the castle-shaped joints.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3