Experimental Investigation of Cement/Soda Residue for Solidification/Stabilization of Cr-Contaminated Soils

Author:

Zha Fusheng1,Zhu Fanghua1,Kang Bo1ORCID,Xu Long1,Deng Yongfeng2ORCID,Yang Chengbin1,Chu Chengfu1

Affiliation:

1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

2. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China

Abstract

Adopting more efficient and sustainable remediation materials is of great importance for the development of solidification and stabilization (S/S) technology. Among them, soda residue could be considered as a desirable binder due to its strong adsorption for heavy metals. For understanding of the performance of Cr-contaminated soils treated by cement/soda residue, the strength, leaching and microstructural characteristics, and the long-term effectiveness under wetting-drying cycles were comprehensively investigated in this study. The results showed that the unconfined compressive strength (UCS) increased and the leached Cr3+ concentration decreased with curing time, binder content, and binder ratio. Increasing the soda residue from C6S14 to C6S24 could improve soil strength and reduce leachability of Cr3+, while a reverse trend was presented with increasing initial Cr3+ concentration. With subsequent wetting-drying cycles, the UCS further increased and then decreased; inversely, the leached Cr3+ decreased, followed by an increase of Cr-contaminated soils. For the specimens of C6S14 and C6S24, the maximum UCS of 6.04 MPa and 6.48 MPa was reached; correspondingly, the minimum leached Cr3+ concentration of 2.78 mg/L and 1.93 mg/L was reached after 3 wetting-drying cycles, respectively. Microstructure analysis results found that reaction products like calcium silicate hydrate (C-S-H) and ettringite (AFt) increasingly occupied the soil pore space and caused a denser soil structure after 3 wetting-drying cycles, which indicated the long-term effectiveness of contaminated soils treated by cement/soda residue.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3