Stability Control of Staged Filling Construction on Soft Subsoil Using Hyperbolic Settlement Prediction Method: A Case Study of a Tidal Flat in China

Author:

Yu Fei1ORCID,Li Shichang12,Dai Zhangjun1ORCID,Li Jian1ORCID,Chen Shanxiong1

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

An improved method, which combines in situ measured settlement data, hyperbolic method, and deep lateral displacement rate, is presented in this study to predict the consolidation and stability of the ground, which can be used in conducting staged filling construction on soft subsoil. A case history of a highway embankment construction in a tidal flat with thick mucky clay is studied in Xia Pu, China. Preloading with the prefabricated vertical drain method is adopted to accelerate the consolidation of a subgrade. The field behavior of soft ground under filling load is observed through in situ monitoring sensors in four typical sections. The final ground settlement in each stage is determined using the field monitoring data based on the hyperbolic settlement prediction method. For each stage of graded filling load, the ground settlement with a strain consolidation degree of 95% is defined as the standard settlement, and the corresponding settlement time is set as the standard settlement time. The preloading period is estimated according to the standard settlement time. The deep lateral displacement rate of the ground is monitored to control the stability of the foundation and recommended to guide the embankment construction. Results indicate that the presented method can predict the preloading time of graded filling, reduce the frequency of observation, and ensure the consolidation and stability of the ground.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3