Investigation of Biogas Energy Yield from Local Food Waste and Integration of Biogas Digester and Baking Stove for Injera Preparation: A Case Study in the University of Gondar Student Cafeteria

Author:

Bicks Ashenafi Tesfaye1ORCID

Affiliation:

1. Department of Mechanical Engineering, Institute of Technology/University of Gondar, Gondar, Ethiopia

Abstract

Energy shortage is the main problem while preparing food at the university in Ethiopia. Baking of injera consumes a lot of firewood due to the nature of baking mitad and layout of the system. The daily average firewood consumption is 8600 kg which is equivalent to 790.3 m3 of gas. In this study, an investigation of energy yield from food waste is examined by assessing the daily waste generation rate from the university student cafeteria and configuring the baking stove (mitad) that utilizes biogas energy. CFD is used to investigate the performance and heat distribution of baking mitad. In the study, the measured average daily biodegradable food waste and kitchen waste generation rate in the campus is around 863 kg/day. The conversion of this food waste using the anaerobic digestion system yields 43.2 m3 biogas per day. Utilizing the daily biogas generated for baking injera improves the overall food making process and reduces firewood consumption by 5.4%. This biogas energy yield is considered to be utilized for baking injera in the kitchen. The designed biogas mitad (stove) does not generate smoke due to the type of fuel used and configuration of baking mitad. Furthermore, the stove has an insulation mechanism considered to conserve the heat loss to the surrounding. Generally, the utilization of the biogas system and integration of the biogas injera baking stove will improve the overall food processing mechanism in the university.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3