Affiliation:
1. School of Computer Science & Mathematics, Kingston University London, Kingston KT1 2EE, UK
Abstract
Efficient management of smart transport systems requires the integration of various sensing technologies, as well as fast processing of a high volume of heterogeneous data, in order to perform smart analytics of urban networks in real time. However, dynamic response that relies on intelligent demand-side transport management is particularly challenging due to the increasing flow of transmitted sensor data. In this work, a novel smart service-driven, adaptable middleware architecture is proposed to acquire, store, manipulate, and integrate information from heterogeneous data sources in order to deliver smart analytics aimed at supporting strategic decision-making. The architecture offers adaptive and scalable data integration services for acquiring and processing dynamic data, delivering fast response time, and offering data mining and machine learning models for real-time prediction, combined with advanced visualisation techniques. The proposed solution has been implemented and validated, demonstrating its ability to provide real-time performance on the existing, operational, and large-scale bus network of a European capital city.
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献