Main Factors Influencing Winter Visibility at the Xinjin Flight College of the Civil Aviation Flight University of China

Author:

Zhang Jing1ORCID,Zhao Pengguo2ORCID,Wang Xiuting2,Zhang Jie3,Liu Jia4,Li Bolan5,Zhou Yunjun2,Wang Hao6ORCID

Affiliation:

1. Xinjin Flight College, Civil Aviation Flight University of China, Chengdu 611430, China

2. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China

3. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. Climate Center of Sichuan Province, Chengdu 610072, China

5. Sichuan Ecological Environment Monitoring Center, Chengdu 610041, China

6. College of Atmospheric Sounding, Chengdu University of Information Technology, Chengdu 610225, China

Abstract

Utilizing routine hourly meteorological data of Xinjin Airport and daily average PM2.5 concentration data for Chengdu, winter visibility characteristics at Xinjin Airport between 2013 and 2017 and their relationship with meteorological conditions and particulate matter were analyzed. Between 2013 and 2017, the average winter visibility in Xinjin Airport was lowest in January, followed by that in December. The occurrence frequency of haze days in winter was much higher than that of nonhaze (clean) days, being 90.2% and 9.8%, respectively. These were mainly mild haze days, with an occurrence frequency of 44.4%, while severe haze days occurred the least, with a frequency of 7.7%. The linear and nonlinear relationships between winter visibility, meteorological factors, and PM2.5 were measured using daily data in winter from 2013 to 2016. The linear correlation between PM2.5 concentration and visibility was the most evident, followed by that of relative humidity. Visibility had a higher nonlinear correlation with PM2.5 concentration, relative humidity, and dew point depression. When relative humidity was between 70% and 80%, the negative correlation between visibility and PM2.5 concentration was the most significant and could be described by a power function. The multivariate linear regression equation of PM2.5 concentration and relative humidity could account for 65.9% of the variation in winter visibility, and the multivariate nonlinear regression equation of PM2.5 concentration, relative humidity, and wind speed could account for 68.1% of the variation in winter visibility. These two equations reasonably represented the variation in winter visibility in 2017.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3