Prediction of Fracture Toughness in the Shale Formation Based on Well Logging and Seismic Data: A Case Study of the Lower Silurian Longmaxi Formation in the Sichuan Basin, China

Author:

Liu Kaiyuan1,Xiong Jian2ORCID,Zhang Xi1,Fan Xiao1,Li Le1

Affiliation:

1. Geophysical Technology Research Center of BGP Inc., China National Petroleum Corporation, Chengdu 610500, China

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

The rock physics experiments and fracture toughness tests of shales from the Lower Silurian Longmaxi Formation in the Sichuan Basin in China were carried out. Based on this, the calculation model of the fracture toughness was constructed, thus, the single well evaluation of the fracture toughness in shale formation would be obtained based on the well logging data, which can be used to summarize the spatial distribution characteristics of the fracture toughness in the shale formation. However, it is difficult to obtain transverse distribution characteristics of fracture toughness in shale formation based solely on the well logging data. Therefore, in order to investigate the spatial distribution of the fracture toughness, jointing well logging and seismic method could be adopted to quantitatively predict the fracture toughness in shale formation. The results show that fracture toughness of shales is sensitive to acoustic interval transit time and wave impedance. The prediction model of the fracture toughness of shales was constructed, which had a good prediction effect. The fracture toughness values of shales from the Upper Silurian Wufeng-Longmaxi Formation were larger, whereas those of shales from the Lower Silurian Wufeng-Longmaxi Formation were lower. The fracture toughness is mainly distributed in strips along the vertical direction while the distribution area is continuous in the lateral direction, indicating that it has obvious stratification characteristics.

Funder

Southwest Petroleum University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3