A Case of Carbon Monoxide-Induced Delayed Neurological Sequelae Successfully Treated with Hyperbaric Oxygen Therapy, N-Acetylcysteine, and Glucocorticoids: Clinical and Neuroimaging Follow-Up

Author:

Spina Vincenzo1ORCID,Tomaiuolo Francesco2,Celli Lorenzo3,Bonfiglio Luca1ORCID,Cecchetti Luca4,Carboncini Maria Chiara1

Affiliation:

1. Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

2. Auxilium Vitae, Volterra (Pisa), Italy

3. Neurology Department, ASLAL, San Giacomo Hospital, Novi Ligure (Alessandria), Italy

4. Molecular Mind Lab, IMT School for Advanced Studies Lucca, Lucca, Italy

Abstract

Carbon monoxide (CO) poisoning is a leading cause of intentional and unintentional poisoning worldwide, associated with mortality and severe morbidity. Some survivors of CO poisoning develop, after a lucid interval, a potentially permanent encephalopathy in the form of cognitive impairment and movement disorders, such as Parkinsonism. One of the most frequent neuroimaging findings is a cerebral white matter damage, but so far its precise cause and specific therapy are still debated. We here report the case of a 33-year-old woman with severe carbon monoxide poisoning who, after a period of lucid interval, presented symptoms of declining motor and cognitive functions. She was treated with 40 sessions of Hyperbaric Oxygen Therapy (HBOT). The therapeutic use of oxygen at supraphysiological pressures might either increase systemic oxidative stress or cause an overproduction of oxygen free radicals as drawbacks. Concurrent use of antioxidants and anti-inflammatory drugs may prevent the side effects of oxygen therapy at supraphysiological pressure due to oxidative stress. For this reason, the patient was also treated with high-dose N-Acetylcysteine and glucocorticoids. Here, we describe the longitudinal monitoring of patient’s cognitive abilities and leukoencephalopathy associated with her positive clinical outcome.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3