Two Improved Methods of Generating Adversarial Examples against Faster R-CNNs for Tram Environment Perception Systems

Author:

Huang Shize1,Liu Xiaowen2,Yang Xiaolu3ORCID,Zhang Zhaoxin2,Yang Lingyu2

Affiliation:

1. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China

2. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai, China

3. China Railway Shanghai Group Co., Ltd., Shanghai Signal and Communication Division, Shanghai, China

Abstract

Trams have increasingly deployed object detectors to perceive running conditions, and deep learning networks have been widely adopted by those detectors. Growing neural networks have incurred severe attacks such as adversarial example attacks, imposing threats to tram safety. Only if adversarial attacks are studied thoroughly, researchers can come up with better defence methods against them. However, most existing methods of generating adversarial examples have been devoted to classification, and none of them target tram environment perception systems. In this paper, we propose an improved projected gradient descent (PGD) algorithm and an improved Carlini and Wagner (C&W) algorithm to generate adversarial examples against Faster R-CNN object detectors. Experiments verify that both algorithms can successfully conduct nontargeted and targeted white-box digital attacks when trams are running. We also compare the performance of the two methods, including attack effects, similarity to clean images, and the generating time. The results show that both algorithms can generate adversarial examples within 220 seconds, a much shorter time, without decrease of the success rate.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noise-assisted data enhancement promoting image classification of municipal solid waste;Resources, Conservation and Recycling;2024-10

2. Adversarial attack on human pose estimation network;Journal of Electronic Imaging;2024-02-24

3. Adversarial attacks on YOLACT instance segmentation;Computers & Security;2022-05

4. Seek-and-Hide: Adversarial Steganography via Deep Reinforcement Learning;IEEE Transactions on Pattern Analysis and Machine Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3