Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques

Author:

Xu Meixiang1,Ma Liang1,Bujalowski Paul J.12,Qian Feng3ORCID,Sutton R. Bryan4,Oberhauser Andres F.125

Affiliation:

1. Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA

2. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA

3. Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

4. Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

5. Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA

Abstract

Polycystin-1 is a large transmembrane protein, which, when mutated, causes autosomal dominant polycystic kidney disease, one of the most common life-threatening genetic diseases that is a leading cause of kidney failure. The REJ (receptor for egg lelly) module is a major component of PC1 ectodomain that extends to about 1000 amino acids. Many missense disease-causing mutations map to this module; however, very little is known about the structure or function of this region. We used a combination of homology molecular modeling, protein engineering, steered molecular dynamics (SMD) simulations, and single-molecule force spectroscopy (SMFS) to analyze the conformation and mechanical stability of the first ~420 amino acids of REJ. Homology molecular modeling analysis revealed that this region may contain structural elements that have an FNIII-like structure, which we named REJd1, REJd2, REJd3, and REJd4. We found that REJd1 has a higher mechanical stability than REJd2 (~190 pN and 60 pN, resp.). Our data suggest that the putative domains REJd3 and REJd4 likely do not form mechanically stable folds. Our experimental approach opens a new way to systematically study the effects of disease-causing mutations on the structure and mechanical properties of the REJ module of PC1.

Funder

PKD Foundation

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3