Software Defect Prediction Based on Fuzzy Weighted Extreme Learning Machine with Relative Density Information

Author:

Zheng Shang1ORCID,Gai Jinjing1ORCID,Yu Hualong1ORCID,Zou Haitao1ORCID,Gao Shang1ORCID

Affiliation:

1. School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China

Abstract

To identify software modules that are more likely to be defective, machine learning has been used to construct software defect prediction (SDP) models. However, several previous works have found that the imbalanced nature of software defective data can decrease the model performance. In this paper, we discussed the issue of how to improve imbalanced data distribution in the context of SDP, which can benefit software defect prediction with the aim of finding better methods. Firstly, a relative density was introduced to reflect the significance of each instance within its class, which is irrelevant to the scale of data distribution in feature space; hence, it can be more robust than the absolute distance information. Secondly, a K-nearest-neighbors-based probability density estimation (KNN-PDE) alike strategy was utilised to calculate the relative density of each training instance. Furthermore, the fuzzy memberships of sample were designed based on relative density in order to eliminate classification error coming from noise and outlier samples. Finally, two algorithms were proposed to train software defect prediction models based on the weighted extreme learning machine. This paper compared the proposed algorithms with traditional SDP methods on the benchmark data sets. It was proved that the proposed methods have much better overall performance in terms of the measures including G-mean, AUC, and Balance. The proposed algorithms are more robust and adaptive for SDP data distribution types and can more accurately estimate the significance of each instance and assign the identical total fuzzy coefficients for two different classes without considering the impact of data scale.

Funder

Scientific Research Foundation

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3