Affiliation:
1. Cardiovascular Medical Department, Fuwai Hospital CAMS, Shenzhen, China
Abstract
The automatic segmentation of main vessels on X-ray angiography (XRA) images is of great importance in the smart coronary artery disease diagnosis system. However, existing methods have been developed to this task, but these methods have difficulty in recognizing the coronary artery structure in XRA images. Main vessel segmentation is still a challenging task due to the diversity and small-size region of the vessel in the XRA images. In this study, we propose a robust method for main vessel segmentation by using deep learning architectures with fully convolutional networks. Four deep learning models based on the UNet architecture are evaluated on a clinical dataset, which consists of 3200 X-ray angiography images collected from 1118 patients. Using the precision (Pre), recall (Re), and F1 score (F1) as evaluation metrics, the average Pre, Re, and F1 for main vessel segmentation in the entire experimental dataset is 0.901, 0.898, and 0.900, respectively. 89.8% of the images exhibited a high F1 score >0.8. For the main vessel segmentation in XRA images, our deep learning methods demonstrated that vessels could be segmented in real time with a more optimized implementation, to further facilitate the online diagnosis in smart medical.
Funder
ShenZhen Innovation Funding
Subject
General Engineering,General Mathematics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献