An Approach for Handling Uncertainties Related to Behaviour and Vehicle Mixes in Traffic Simulation Experiments with Automated Vehicles

Author:

Olstam Johan12ORCID,Johansson Fredrik1,Alessandrini Adriano3,Sukennik Peter4,Lohmiller Jochen4,Friedrich Markus5

Affiliation:

1. Swedish National Road and Transport Research Institute (VTI), Linköping SE-581 95, Sweden

2. Linköping University, Department of Science and Technology (ITN), Norrköping 60174, Sweden

3. University of Florence, Dipartimento di Ingegneria Civile e Ambientale (DICEA), Firenze 50139, Italy

4. PTV Group, Karlsruhe 76131, Germany

5. University of Stuttgart, Institute for Road and Transport Science, Department for Transport Planning and Traffic Engineering, Stuttgart Pfaffenwaldring 7, 70569, Germany

Abstract

The introduction of automated vehicles is expected to affect traffic performance. Microscopic traffic simulation offers good possibilities to investigate the potential effects of the introduction of automated vehicles. However, current microscopic traffic simulation models are designed for modelling human-driven vehicles. Thus, modelling the behaviour of automated vehicles requires further development. There are several possible ways to extend the models, but independent of approach a large problem is that the information available on how automated vehicles will behave is limited to today’s partly automated vehicles. How future generations of automated vehicles will behave will be unknown for some time. There are also large uncertainties related to what automation functions are technically feasible, allowed, and actually activated by the users, for different road environments and at different stages of the transition from 0 to 100% of automated vehicles. This article presents an approach for handling several of these uncertainties by introducing conceptual descriptions of four different types of driving behaviour of automated vehicles (Rail-safe, Cautious, Normal, and All-knowing) and presents how these driving logics can be implemented in a commonly used traffic simulation program. The driving logics are also linked to assumptions on which logic that could operate in which environment at which part of the transition period. Simulation results for four different types of road facilities are also presented to illustrate potential effects on traffic performance of the driving logics. The simulation results show large variations in throughput, from large decreases to large increases, depending on driving logic and penetration rate.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3