Affiliation:
1. Kohat University of Science and Technology, Kohat, Pakistan
2. Northern University, Nowshehra, Pakistan
3. Al-Madinah International University, Kuala Lumpur, Malaysia
Abstract
COVID-19, a deadly disease that originated in Wuhan, China, has resulted in a global outbreak. Patients infected with the causative virus SARS-CoV-2 are placed in quarantine, so the virus does not spread. The medical community has not discovered any vaccine that can be immediately used on patients infected with SARS-CoV-2. The only method discovered so far to protect people from this virus is keeping a distance from other people, wearing masks and gloves, as well as regularly washing and sanitizing hands. Government and law enforcement agencies are involved in banning the movement of people in different cities, to control the spread and monitor people following the guidelines of the CDC. But it is not possible for the government to monitor all places, such as shopping malls, hospitals, government offices, and banks, and guide people to follow the safety guidelines. In this paper, a novel technique is developed that can guide people to protect themselves from someone who has high exposure to the virus or has symptoms of COVID-19, such as having fever and coughing. Different deep Convolutional Neural Networks (CNN) models are implemented to test the proposed technique. The proposed intelligent monitoring system can be used as a complementary tool to be installed at different places and automatically monitor people adopting the safety guidelines. With these precautionary measurements, humans will be able to win this fight against COVID-19.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献