Safety Monitoring of Expressway Construction Based on Multisource Data Fusion

Author:

Xiao Dianliang1,Zhang Tiantao2,Zhou Xudong3,Zheng Guangshun2,Song Haoran1ORCID

Affiliation:

1. Transportation Safety Research Center, China Academy of Transportation Sciences, Beijing 100029, China

2. Qilu Transportation Development Group, Jinan 250014, Shandong, China

3. Guangdong Highway Construction Co., Ltd., Guangzhou 510699, Guangdong, China

Abstract

China’s terrain is complex, both plain, microhill (heavy-hill) and mountainous terrain; the hidden dangers of highway construction are prominent. Construction site management, production safety management, and construction personnel management are difficult, and it is necessary to borrow advanced technology to establish information, and it is necessary to borrow advanced technology to establish information system to realize the visualization of safety monitoring. In the construction of highways, mountainous terrain is often complicated due to complex terrain, high mountains, and deep valleys. Excavation of the mountain mass is required to form high and steep slopes. For successful projects, safety monitoring is particularly important. Multisource data fusion is one of the computer application technologies. It is an information processing technology that is automatically analyzed and synthesized under certain criteria to complete the required decision-making and evaluation tasks. This paper analyzes high-speed data in the context of multisource data fusion. Study on highway slope construction safety monitoring. BP neural network fusion technology of multisource data fusion technology is used. A high-speed breccia-bearing silty clay slope is taken as the research object. The feedback information about the deployed monitoring system is fully used in the slope design and construction. The construction design parameters are reversed to predict the stability of the slope and ensure the safety of construction and operation of similar slopes of the entire expressway. The research in this paper finds that the maximum deviation between the slope displacement value and the measured value obtained by the slope monitoring based on multisource data fusion in this paper is 7.53%, which is less than 10%, which verifies the feasibility of the method in this paper. The research methods and ideas of this paper can also provide a reference for similar engineering research.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3