Coupling Effect of Creep Deformation and Prestress Loss of Anchored Jointed Rock

Author:

Zhu Bairu1ORCID,Song Yang2,Wang Heping1,Li Yongqi1

Affiliation:

1. School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China

2. College of Architecture and Transportation, Liaoning Technical University, Fuxin, Liaoning 123000, China

Abstract

To explore the variation behaviour of anchor jointed rock subject to high in situ stress states, a coupling effect calculation model based on stress equality was established based on the original rheological model of rock by combining element combination theory and experiment, and the model was verified. The coupling effect between rock mass creep and bolt prestress loss is established by setting the deterioration function of bolt prestress loss. The uniaxial creep test is performed on specimens with different joint angles, and the results show that the prestress loss time in anchor rods decreases linearly with increasing stress level. With increasing stress level, the time of prestress loss decreases linearly with the increase in stress level. With increasing axial load, the deformation caused by the transverse expansion stress of the specimen can offset the compression deformation of the prestressed anchor rod. The relationship between prestress loss in anchors and creep of rock is solved theoretically, and the stability criterion for anchor jointed rock is proposed. The results of this study provide a scientific reference for anchor design of deep jointed rock mass.

Funder

Fund Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3