A Comparative Performance Investigation of Swarm Optimisers on the Design of Hydrostatic Thrust Bearing

Author:

Sahin Ismail1ORCID

Affiliation:

1. Gazi University, Technology Faculty, Department of Industrial Design Engineering, Teknikokullar-06500, Ankara, Turkey

Abstract

In the design of hydrostatic thrust bearings, power loss that occurs during operation is an important parameter that affects the design, and due to such features, it falls within the interest of design optimisation studies. The fact that the decimal places of the constraints and design variables used for minimum power loss optimisation of hydrostatic thrust bearings are highly effective on the result is a challenge for the design optimisation studies carried out on the problem and has yet made it rather attractive for the researchers. In this study, it is this feature of the problem that makes it the most important motivator in researching the performance of different metaheuristic optimisers in solving the minimum power loss problem. To this end, 7 different optimisers, four of them for the first time, were applied under equal conditions with various pop sizes and a number of iterations, and their performances were addressed under this challenging benchmark problem. The performances of these methods were compared to each other. In addition to the success of optimisers in reaching a solution, their performance in different populations and iterations is also discussed in the study. Considering the results, it is seen that MVO is the most effective optimiser in solving the problem and is followed by the WOA, PSO, and GWO. The application of WOA, MVO, CS, and SSA, for the first time, on the problem has exhibited that these methods could be used in optimisation of such delicate engineering problems.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of planetary gearbox using nature inspired meta-heuristic optimizers;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3