Effect of the Size and Position of a Damping Ditch on the Reduction of the Blasting Vibration

Author:

Duan Baofu12ORCID,Shen Shizhan12ORCID,Ta Guoshan12ORCID,Sun Kebin12,Hou Wei12,Gu Li12

Affiliation:

1. Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

2. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Abstract

The size and position of the damping ditch have a direct impact on the blasting vibration. In order to explore the effect of damping ditches of different sizes and positions, we investigated field blasting in the A3 area of the second phase of the Lufeng Nuclear Power Plant project. The simulation software ANSYS/LS-DYNA was used to simulate the vibration propagation of damping ditches with different depths, widths, and positions. Secondly, the vibration data of the corresponding measuring points were collected and the amplitude reduction was analyzed in different situations. An analysis of the numerical simulation results showed that an increase in the damping ditch width increased the vibration amplitude at the top of the building. The depth and position of the damping ditch were the main factors affecting the damping performance. A regression analysis was conducted using the Sadove equation for vibration velocity. It was found that the regression coefficient of the Sadove equation did not meet the required standards when a damping ditch was present. The vibration attenuation equations were fitted for the top and the base of the building. The results of this study provide reference data for the excavation and arrangement of damping ditches in practical applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3