Uniaxial Experimental Study of the Deformation Behavior and Energy Evolution of Conjugate Jointed Rock Based on AE and DIC Methods

Author:

Pan Jiliang1,Wu Xu2,Guo Qifeng13ORCID,Xi Xun4,Cai Meifeng1

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Beijing Municipal Engineering Research Institute, Beijing 100037, China

3. State Key Laboratory of Coal Resources in Western China, Xi’an University of Science and Technology, Xi’an 710054, China

4. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK

Abstract

Conjugate joint is one of the most common joint forms in natural rock mass, which is produced by different tectonic movements. To better understand the preexisting flaws, it is necessary to investigate joint development and its effect on the deformation and strength of the rock. In this study, uniaxial compression tests of granite specimens with different conjugate joints distribution were performed using the GAW-2000 compression-testing machine system. The PCI-2 acoustic emission (AE) testing system was used to monitor the acoustic signal characteristics of the jointed specimens during the entire loading process. At the same time, a 3D digital image correlation (DIC) technique was used to study the evolution of stress field before the peak strength at different loading times. Based on the experimental results, the deformation and strength characteristics, AE parameters, damage evolution processes, and energy accumulation and dissipation properties of the conjugate jointed specimens were analyzed. It is considered that these changes were closely related to the angle between the primary and secondary joints. The results show that the AE counts can be used to characterize the damage and failure of the specimen during uniaxial compression. The local stress field evolution process obtained by the DIC can be used to analyze the crack initiation and propagation in the specimen. As the included angle increases from 0° to 90°, the elastic modulus first decreases and then increases, and the accumulative AE counts of the peak first increase and then decrease, while the peak strength does not change distinctly. The cumulative AE counts of the specimen with an included angle of 45° rise in a ladder-like manner, and the granite retains a certain degree of brittle failure characteristics under the axial loading. The total energy, elastic energy, and dissipation energy of the jointed specimens under uniaxial compression failure were significantly reduced. These findings can be regarded as a reference for future studies on the failure mechanism of granite with conjugate joints.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3