Numerical Simulation of Cracking Behavior of Precracked Rock under Mechanical-Hydraulic Loading

Author:

Zhang Zhong1,Ma Chun-Chi1ORCID,Li Tianbin1,Song Tao1,Xing Huilin2

Affiliation:

1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

2. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao 266100, Australia

Abstract

The cracking behavior of precracked rocks under mechanical-hydraulic loading is of great significance in underground openings or petroleum engineering. In this study, an advanced in-house finite element code PANDAS proved to be effective in simulating coupled fracturing processes under complex geological conditions was used to simulate the cracking propagation of the precracked rocks under mechanical loading and mechanical-hydraulic loading with different strength parameters. The simulation results demonstrated that (1) the cracks initiate by the induced stresses, and multiple types of tensile cracks originate from the preexisting flaws; (2) crack propagation patterns under mechanical-hydraulic loading were studied with different strength parameters, and the multiple patterns of pure tensile, main tensile, tensile-shear, main shear, and pure shear were observed; and (3) the timing of hydraulic loading has a significant impact on the fracturing process: when hydraulic loading was carried out in the phase of main crack propagation, the tensile fracture was promoted and the shear fracture was inhibited; when hydraulic loading was carried out in the phase of shear crack propagation, the shear fracture and tensile fracture were stimulated. The numerical simulation results are in good agreement with the experimental results by previous studies. The research on the cracking behavior of precracked rocks under mechanical and hydraulic loading will expand the application prospect in the fields of coal seam gas reservoir and tunnel water inrush.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study on Crack Propagation Law and Mechanism of the Pre-cracked Rock;Geotechnical and Geological Engineering;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3