Analysis of Electric Vehicle Charging Behavior Patterns with Function Principal Component Analysis Approach

Author:

Chen Chenxi1,Song Yang1,Hu Xianbiao1ORCID,Guardiola Ivan G.2ORCID

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

2. School of Business Administration, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA

Abstract

This manuscript focused on analyzing electric vehicles’ (EV) charging behavior patterns with a functional data analysis (FDA) approach, with the goal of providing theoretical support to the EV infrastructure planning and regulation, as well as the power grid load management. 5-year real-world charging log data from a total of 455 charging stations in Kansas City, Missouri, was used. The focuses were placed on analyzing the daily usage occupancy variability, daily energy consumption variability, and station-level usage variability. Compared with the traditional discrete-based analysis models, the proposed FDA modeling approach had unique advantages in preserving the smooth function behavior of the data, bringing more flexibility in the modeling process with little required assumptions or background knowledge on independent variables, as well as the capability of handling time series data with different lengths or sizes. In addition to the patterns revealed in the EV charging station’s occupancy and energy consumption, the differences between EV driver’s charging time and parking time were analyzed and called for the needs for parking regulation and enforcement. The different usage patterns observed at charging stations located on different land-use types were also analyzed.

Funder

U.S. Department of Energy

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3