Affiliation:
1. Basic Medical Sciences Department at Sulaiman Al Rajhi University, Al Bukayriyah, Saudi Arabia
2. Medical College at Chonbuk National University, Jeonju, Republic of Korea
Abstract
Background and Objectives. The primary function of platelets is to prevent bleeding. The use of UV-C light in the treatment of platelets has become a valuable method for preserving the efficacy of platelet concentrates in blood banks. However, its deleterious effect remains, such as the activation of platelets, thus causing the platelets to lose their physiological function. In this study, we intended to demonstrate the impact of UV-C on platelets and how the use of glutamine could mitigate the loss of physiological function of the platelets caused by UV-C. Materials and Methods. This study was conducted using mouse platelets. We assessed calcium signaling using Fura-2 AM incubation and dense granule secretion of the platelets using luminescence assay by measuring ATP. At the molecular level, the activation of integrin using PAC-1 antibody was analyzed. Phosphorylation of immune-precipitated cPLA2 was assessed using a specific antibody. All the experiments were carried out with or without glutamine in the presence of UV-C. Positive and negative controls were used in all experiments to validate the findings. Results. We have demonstrated that physiological and biochemical damage arises as a result of the exposure of platelet concentrate to UV-C and that the use of glutamine could alleviate this damage. Various experiments, thrombus formation, integrin activation, and phosphorylation of cPLA2 were preserved using 50 mM of glutamine in the presence of UV-C, which reduces 50% of platelet viability. Conclusions. Our study demonstrates that the storage of platelet concentrates under the UV-C activates their physiological process and renders them to the thrombus formation, hence decreasing their viability. The presence of a moderate amount of glutamine can alleviate the toxic effect of UV-C, and platelet concentrates could be kept viable for a long time.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献