Practical Energy Dissipation Control of Near Space Glider on Independent Longitudinal Plane

Author:

Chen Zhigang1,Wang Ying1,Sun Mingwei2ORCID,Wang Zenghui3ORCID,Chen Zengqiang2ORCID

Affiliation:

1. Science and Technology on Space Physics Laboratory, Beijing 100076, China

2. College of Artificial Intelligence, Nankai University, Tianjin 300350, China

3. Department of Electrical and Mining Engineering, University of South Africa, Florida 1710, South Africa

Abstract

The near-space hypersonic aerodynamic glider has strong maneuverability in wide flight envelope. The glide is generally achieved in a smooth manner with no or weak altitude oscillations in the altitude. The maximum lift-to-drag ratio glide is a typical trajectory that can approximate the maximum glide range, which is a crucial indicator for a glider. However, another important indicator, the minimum glide range, which is used in some time-sensitive missions and is expected to reduce the velocity to a specified threshold in a short longitudinal range, is difficult to be realized. In practice, the excessive velocity or energy is usually dissipated during lateral manipulation, wherein either the entire glide range or the glide time is not shortened. An innovative guidance strategy is proposed for achieving the minimum glide range based on a typical maximum glide scheme and bang-bang control scheme only on the longitudinal plane, and the flight time can be reduced considerably. Then, a practical extended state observer based pitch control is utilized to efficiently track the bang-bang command within a wide velocity envelope to achieve the guidance objective. Extensive simulation results demonstrate the effectiveness of the proposed methods.

Funder

Eskom Tertiary Education Support Programme Grant of South Africa

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3