Hypermethylation of EFEMP1 in the Hippocampus May Be Related to the Deficit in Spatial Memory of Rat Neonates Triggered by Repeated Administration of Propofol

Author:

Zhang Nu12,Liao Zhiyi3,Wu Pinwen2,Fang Hao14ORCID,Cai Guoping5ORCID

Affiliation:

1. Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai 201508, China

2. Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai 201100, China

3. College of Information Engineering, Wuhan International Trade University, Wuhan 430205, China

4. Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

5. Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai 201508, China

Abstract

It has been confirmed that repeated application of propofol, as an intravenous and short-fast-acting anesthetic, in neonatal animals or humans may produce long-term deficits in cognitive functions. With the aim of explaining the neurotoxic effects of repeated administration of propofol on neonatal rat pups from P7 to P9 especially from an epigenetic perspective, the present study used the Morris water maze to detect cognitive deficits in spatial learning and memory, Sequenom methylation on the CpG island located in the promoter region of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to assess the methylation level of this region, and Western blot to measure the expression of EFEMP1, TIMP-3, and MMP-9. As the results have shown, repeated propofol administration on neonatal rats caused significant systemic growth retardation, impairment of spatial learning and memory, and hypermethylation of the CpG sites in the promoter region of EFEMP1 accompanied by lower expression of EFEMP1 and TIMP-3 and enhanced expression of MMP-9. These data suggest that repeated propofol administration in neonatal rats may generate hypermethylation in the promoter region of EFEMP1 which results in downregulation of the expression of EFEMP1 and tissue inhibitor of metalloproteinase-3 (TIMP-3) but upregulation of the expression of matrix metalloproteinase-9 (MMP-9), which together may affect the stability of ECM to hamper the development of the central nervous system and therefore lead to deficits in cognitive functions.

Funder

Funding of Minhang Hospital

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3