An Analytical Mechanical Model of Corti in the Cochlea

Author:

Su Jiangtao1ORCID,Yao Wenjuan1ORCID,Zhao Zhengshan1

Affiliation:

1. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China

Abstract

The organ of Corti (OC) in the cochlea is a significant structure for feeling sound. The components of OC and the interaction of the part with the surroundings contribute to the fact that the passive tuning of the cochlear macrostructure is unclear. Based on the interaction between the basilar membrane (BM), tectorial membrane (TM), reticular lamina (RL), and various parts of OC, a mechanical model of the cochlea is established to study the motion patterns of each part under the action of a certain pressure. The variational principle is applied to the calculation of the analytical expression of the displacement of the BM. The results of the analytical solution differ little from the experimental value, and the variation trend is consistent, which presents the correctness of the model. The parameter sensitivity analysis is carried out for obtaining the interaction principle and the primary and secondary roles of each component in the process of the sense of sound. The results show that the absence of the TM and the decrease in the stiffness of the outer hair cells (OHCs) and OHC bundles will shift vibratory response patterns to lower frequencies, in which the lack of TM will result in the greatest reduction of CF. The absence of RL exerts a negative influence on the CF as well as the amplitude of BM and thereby loss of hearing. Therefore, both TM and RL are essential structures during the process of the sense of sound. At the same time, the resonance frequency at the base of the BM is concentrated on the high-frequency segment, while the apex of the BM is mainly in the low frequency. Different points of BM correspond to different CF, which demonstrates the frequency selectivity of the BM.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3