Transmission Rate Sampling and Selection for Reliable Wireless Multicast

Author:

Geithner Thomas1ORCID,Sivrikaya Fikret1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Ernst-Reuter-Platz 7, Sekr. TEL 14, 10587 Berlin, Germany

Abstract

The multicast communication concept offers a scalable and efficient method for many classes of applications; however, its potential remains largely unexploited when it comes to link-layer multicasting in wireless local area networks. The fundamental lacking feature for this is a transmission rate control mechanism that offers higher transmission performance and lower channel utilization, while ensuring the reliability of wireless multicast transmissions. This is much harder to achieve in a scalable manner for multicast when compared with unicast transmissions, which employs explicit acknowledgment mechanisms for rate control. This article introduces EWRiM, a reliable multicast transmission rate control protocol for IEEE 802.11 networks. It adapts the transmission rate sampling concept to multicast through an aggregated receiver feedback scheme and combines it with a sliding window forward error correction (FEC) mechanism for ensuring reliability at the link layer. An inherent novelty of EWRiM is the close interaction of its FEC and transmission rate selection components to address the performance-reliability tradeoff in multicast communications. The performance of EWRiM was tested in three scenarios with intrinsically different traffic patterns; namely, music streaming scenario, large data frame delivery scenario, and an IoT scenario with frequent distribution of small data packets. Evaluation results demonstrate that the proposed approach adapts well to all of these realistic multicast traffic scenarios and provides significant improvements over the legacy multicast- and unicast-based transmissions.

Funder

Technische Universität Berlin

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3