Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis

Author:

Feng De-Cheng1ORCID,Fu Bo23ORCID

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 211189, China

2. School of Civil Engineering, Chang’an University, Xi’an 710061, China

3. State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

In this paper, an intelligent modeling approach is presented to predict the shear strength of the internal reinforced concrete (RC) beam-column joints and used to analyze the sensitivity of the influence factors on the shear strength. The proposed approach is established based on the famous boosting-family ensemble machine learning (ML) algorithms, i.e., gradient boosting regression tree (GBRT), which generates a strong predictive model by integrating several weak predictors, which are obtained by the well-known individual ML algorithms, e.g., DT, ANN, and SVM. The strong model is boosted as each weak predictor has its own weight in the final combination according to the performance. Compared with the conventional mechanical-driven shear strength models, e.g., the well-known modified compression field theory (MCFT), the proposed model can avoid the complicated derivation process of shear mechanism and calibration of the involved empirical parameters; thus, it provides a more convenient, fast, and robust alternative way for predicting the shear strength of the internal RC joints. To train and test the GBRT model, a total of 86 internal RC joint specimens are collected from the literatures, and four traditional ML models and the MCFT model are also employed as comparisons. The results indicate that the GBRT model is superior to both the traditional ML models and MCFT model, as its degree-of-fitting is the highest and the predicting dispersion is the lowest. Finally, the model is used to investigate the influences of different parameters on the shear strength of the internal RC joint, and the sensitivity and importance of the corresponding parameters are obtained.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3