Study on the Ignition Process and Characteristics of the Nitrate Ester Plasticized Polyether Propellant

Author:

Yan Xiaoting1ORCID,Xia Zhixun1,Huang Liya1,Ma Likun1,Na Xudong1ORCID,Feng Yunchao1,Fang Chuanbo2

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

2. Qinghe Building Ding-7, Beijing 100085, China

Abstract

In this study, a CO2 laser ignition experimental system was built to study the ignition process and characteristics of the Nitrate Ester Plasticized Polyether (NEPE) propellant. The effect of the energy density, ingredients, and the grain size distribution of the propellant on the ignition process was investigated using a CO2 laser igniter, a high-speed camera, and a tungsten-rhenium thermocouple. Four types of NEPE propellants were tested under different laser heat fluxes, and the ignition delay time, the ignition temperature, and the ignition energy were obtained. Experimental results show that the ignition process of the NEPE propellant can be divided into three stages, namely the first-gasification stage, the first-flame stage, and the ignition delay stage. When the energy density is lower than the ignition energy threshold, the ignition process cannot be achieved even under continuous energy loading. The increase of the energy density can lead to the decrease of the ignition delay time but has little effect on the ignition temperature. The ingredients and grain size distribution have great effects on both the ignition delay time and the ignition temperature. The grain size effect of aluminum is the largest compared with that of Ammonium Perchlorate (AP) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), while the grain size effect of AP is larger than that of HMX.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference29 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3