PACR: Position-Aware Protocol for Connectivity Restoration in Mobile Sensor Networks

Author:

Jadoon Rab Nawaz12ORCID,Awan Adnan Anwar3,Khan Muhammad Amir3,Zhou WuYang1ORCID,Malik Aqdas Naveed4

Affiliation:

1. Key Laboratory of Wireless-Optical Communication, University of Science and Technology China, Hefei 230027, China

2. Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan

3. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan

4. Department of Electronic Engineering, ISRA University I-10/4 Islamabad, 46000, Pakistan

Abstract

Wireless Sensor Networks (WSNs) have gained global attention in recent times due to their vast applications in various fields. These networks can face the disruption of data transmission due to sensor node failures when placed in harsh, inaccessible, and adverse environments such as battlefields or monitoring in enemy territory. The specific tasks performed by the collaboration among the sensor nodes in WSNs by internode connectivity may be terminated. Besides this, due to the failure of sensor nodes, the area covered by the network may be limited, which can cause damage to the objectives for such a network, as there might be an unaware danger in the lost area. Connectivity is a big problem in mobile WSNs due to the mobility of nodes. Researchers have developed a lot of algorithms that are capable enough for connectivity problems, but they do not emphasize the loss of coverage. We try to fill these gaps by proposing the new hybrid algorithm PACR (Position-Aware protocol for Connectivity Restoration). The concept behind PACR is the same as a person who writes his will before death on a deathbed. In the same way, when the sensor energy is below the threshold, it is converted into a recovery coordinator and generates a recovery plan. This accelerates the recovery by decreasing the time needed for failure identification. For the recovery process, the neighbor’s nodes do not travel to the exact position of the failed node. Instead, they just move to the distance where they can build communication links with other nodes. This greatly prolongs the network lifetime. The simulation results show that PACR outperforms other techniques present in the literature.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3