Affiliation:
1. CCTEG Coal Mining Research Institute, Beijing 100013, China
2. Coal Mining Branch, China Coal Research Institute, Beijing 100013, China
3. China University of Mining and Technology-Beijing, School of Energy and Mining Engineering, Beijing 100083, China
4. Sinosteel Group Corporation Limited, Beijing 100080, China
Abstract
Hydraulic support plays a key role in ground control of longwall mining. The smart prediction methods of support load are important for achieving intelligent mining. In this paper, the hydraulic support load data is decomposed into trend term, cycle term, and residual term, and it is found that the data has clear trend and period features, which can be called time series data. Based on the autoregression theory and weighted moving average method, the time series model is built to analyze the load data and predict its evolution trend, and the prediction accuracy of the sliding window model, ARIMA (Autoregressive Integrated Moving Average) model, and SARIMA (Seasonal Autoregressive Integrated Moving Average) model to the hydraulic support load under different parameters are evaluated, respectively. The results of single-point and multipoint prediction test with various sliding window values indicate that the sliding window method has no advantage in predicting the trend of the support load. The ARIMA model shows a better short-term trend prediction than the sliding window model. To some extent, increasing the length of the autoregressive term can improve the long-term prediction accuracy of the model, but it also increases the sensitivity of the model to support load fluctuation, and it is still difficult to predict the load trend in one support cycle. The SARIMA model has better prediction results than the sliding window model and the ARIMA model, which reveals the load evolution trend accurately during the whole support cycle. However, there are many external factors affecting the support load, such as overburden properties, hydraulic support moving speed, and worker’s operation. The smarter model of SARIMA considering these factors should be developed to be more suitable in predicting the hydraulic support load.
Funder
National Key Research and Development Program
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献