Discriminative Label Relaxed Regression with Adaptive Graph Learning

Author:

Wang Jingjing1ORCID,Liu Zhonghua1ORCID,Lu Wenpeng2ORCID,Zhang Kaibing3

Affiliation:

1. Information Engineering College, Henan University of Science and Technology, Luoyang, China

2. School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China

3. College of Electronics and Information, Xi’an Polytechnic University, Xi’an, China

Abstract

The traditional label relaxation regression (LRR) algorithm directly fits the original data without considering the local structure information of the data. While the label relaxation regression algorithm of graph regularization takes into account the local geometric information, the performance of the algorithm depends largely on the construction of graph. However, the traditional graph structures have two defects. First of all, it is largely influenced by the parameter values. Second, it relies on the original data when constructing the weight matrix, which usually contains a lot of noise. This makes the constructed graph to be often not optimal, which affects the subsequent work. Therefore, a discriminative label relaxation regression algorithm based on adaptive graph (DLRR_AG) is proposed for feature extraction. DLRR_AG combines manifold learning with label relaxation regression by constructing adaptive weight graph, which can well overcome the problem of label overfitting. Based on a large number of experiments, it can be proved that the proposed method is effective and feasible.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Fusion Scheme for Face Recognition in Challenging Conditions;Lecture Notes in Networks and Systems;2022-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3