Treating the Solid Pendulum Motion by the Large Parameter Procedure

Author:

Ismail A. I.12ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, P. O. Box 5555 Makkah, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Tanta University, Tanta, P.O. Box 31527, Egypt

Abstract

In this paper, we consider the dynamical description of a pendulum model consists of a heavy solid connection to a nonelastic string which suspended on an elliptic path in a vertical plane. We suppose that the dimensions of the solid are large enough to the length of the suspended string, in contrast to previous works which considered that the dimensions of the body are sufficiently small to the length of the string. According to this new assumption, we define a large parameter ε and apply Lagrange’s equation to construct the equations of motion for this case in terms of this large parameter. These equations give a quasi-linear system of second order with two degrees of freedom. The obtained system will be solved in terms of the generalized coordinates θ and φ using the large parameter procedure. This procedure has an advantage over the other methods because it solves the problem in a new domain when fails all other methods for solving the problem in such a domain under these conditions. It is one of the most important applications, when we study the slow spin motion of a rigid body in a Newtonian field of force under an external moment or the rotational motion of a heavy solid in a uniform gravity field or the gyroscopic motions with a sufficiently small angular velocity component about the major or the minor axis of the ellipsoid of inertia. There are many applications of this technique in aerospace science, satellites, navigations, antennas, and solar collectors. This technique is also useful in all perturbed problems in physics and mechanics, for example, the perturbed pendulum motions and the perturbed mechanical systems. The results of this paper also are useful in moving bridges and the swings. For satisfying the validation of the obtained solutions, we consider numerical considerations by one of the numerical methods and compare the obtained analytical and numerical solutions.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced investigations of a restricted gyrostatic motion;Journal of Low Frequency Noise, Vibration and Active Control;2023-02-28

2. Dynamical Stability of a 3-DOF Auto-Parametric Vibrating System;Journal of Vibration Engineering & Technologies;2022-12-28

3. Analyzing the motion of a forced oscillating system on the verge of resonance;Journal of Low Frequency Noise, Vibration and Active Control;2022-12-02

4. Modeling and analyzing the motion of a 2DOF dynamical tuned absorber system close to resonance;Archive of Applied Mechanics;2022-10-31

5. On the solutions and stability for an auto-parametric dynamical system;Archive of Applied Mechanics;2022-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3