Role of P2X4/NLRP3 Pathway-Mediated Neuroinflammation in Perioperative Neurocognitive Disorders

Author:

Yuan Hui12ORCID,Lu Bo12ORCID,Ji Yiqin3ORCID,Meng Bo12ORCID,Wang Ruichun12ORCID,Sun Daofan14ORCID,Liu Rongjun12ORCID,Zhai Xiaojie12ORCID,Li Xiaoyu12ORCID,Qin Jinling12ORCID,Chen Junping12ORCID

Affiliation:

1. Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China

2. Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China

3. Department of Anesthesiology, Ningbo First Hospital, Ningbo 315010, China

4. Wannan Medical College, Wuhu 214002, China

Abstract

Several studies have demonstrated that neuroinflammation is the key to perioperative neurocognitive disorders (PND); however, the specific mechanism postsurgery and anesthesia has not yet been fully clarified. The present study is aimed at exploring the effects of P2X4/NLRP3 signaling pathway in neuroinflammation and cognitive impairment after surgery. 12–14-month-old male C57BL/6 mice undergoing open tibial fracture surgery by sevoflurane anesthesia were administered P2X4R inhibitor 5-BDBD or saline was intraperitoneally for 3 consecutive days after surgery. Then, the animals were subjected to Morris water maze test or sacrificed to collect the hippocampus. The level of P2X4R and NLRP3 was estimated by Western blot, the activation of microglia was detected via immunohistochemistry, and the expression of TNF-α, IL-1β, and IL-6 was quantified by enzyme-linked immunosorbent assay. These results indicated that tibial surgery caused cognitive impairment, increased the expression of P2X4R and NLRP3, and aggravated the neuroinflammation and microglia activation. However, intraperitoneal injection of 5-BDBD attenuated these effects. In conclusion, these findings indicated that the P2X4/NLRP3 pathway might be involved in the pathophysiology of PND.

Funder

Ningbo Natural Science Foundation, China

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3