GA-IRACE: Genetic Algorithm-Based Improved Resource Aware Cost-Efficient Scheduler for Cloud Fog Computing Environment

Author:

Arshed Jawad Usman1,Ahmed Masroor1,Muhammad Tufail2,Afzal Mehtab3,Arif Muhammad3,Bazezew Banchigize4ORCID

Affiliation:

1. Department of Computer Science, Capital University of Science & Technology, Islamabad, Pakistan

2. Department of Computer Science, Air University, Islamabad, Aerospace and Aviation Campus, Kamra, Pakistan

3. Department of Computer Science and Information Technology, University of Lahore, Lahore, Pakistan

4. Department of Information Technology at Wollo University, Kombolcha Institute of Technology (KIOT), Ethiopia

Abstract

The ever-growing number of Internet of Things (IoT) devices increases the amount of data produced on daily basis. To handle such a massive amount of data, cloud computing provides storage, processing, and analytical services. Besides this, real-time applications, i.e., online gaming, smart traffic management, and smart healthcare, cannot tolerate the high latency and bandwidth consumption. The fog computing paradigm brings the cloud services closer to the network edge to provide quality of service (QoS) to such applications. However, efficient task scheduling becomes critical for improving the performance due to the heterogeneous nature, resource-constrained, and distributed environment of fog resources. With an efficient task scheduling algorithm, the response time to application requests can be reduced along with bandwidth and cloud resource costs. This paper presents a genetic algorithm-based solution to find an efficient scheduling approach for mapping application modules in a cloud fog computing environment. Our proposed solution is based on the execution time as a fitness function to determine an efficient module scheduling on the available fog devices. The proposed approach has been evaluated and compared against baseline algorithms in terms of execution time, monetary cost, and bandwidth. Comprehensive simulation results show that the proposed approach offers a better scheduling strategy than the existing scheduler.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3