Research on the Redistribution Law of Lateral Mining Stress and the Bearing Characteristics of Section Coal Pillar in Extra-Thick Fully Mechanized Top-Coal Caving Mining

Author:

Bu Qingwei12ORCID,Tu Min1ORCID,Fu Baojie1ORCID

Affiliation:

1. Key Laboratory of Safety and High-Efficiency Coal Mining of Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China

2. School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

Due to the change of ground stress environment caused by underground coal mining, the intense lateral mining stress concentration is formed around the stope; so section coal pillar is generally set up to bear the mining pressure, but the different sizes of coal pillars have obvious influence on the bearing capacity of those pillars and the characteristics of mining pressure. Mastering the mechanism characteristics by which coal pillars bearing capacity and mining stress distribution is crucial to identify the reasonable coal pillar size and give full play to the bearing role of section coal pillar, given their importance for the safety and bearing stability of engineering rock mass in underground coal mining. Therefore, the bearing characteristics of section coal pillar and the redistribution of mining stress are achieved with a mechanical model analysis on the basis of the analysis of coal pillar bearing and mining influence characteristics. Moreover, applying the elastic-plastic mechanics theory revealed the mechanical equations of the effective bearing size of coal pillar and redistribution of mining stress in longwall face. Combined with the analysis of a specific engineering example, the research results are as follows. During a roadway excavation, the continuous mining stress transfer occurs “stress redistribution” and the mechanical failure of bearing coal pillar consists of lateral mining and roadway side failures. The bearing coal pillar has two critical dimensions (i.e., the critical dimension W e of the self-bearing stability coal pillar and the critical dimension W p of failure through the coal pillar). The mechanical state of the lateral mining stress redistribution and bearing coal pillar is divided into the three situations: ① when the width of coal pillar W  <  W p , only one stress concentration area exists, the bearing capacity of the coal pillar is invalid at this stage, and the lateral mining stress concentration transfers to the roadway solid coal side; ② when the width of the coal pillar W e  ≥  W  ≥  W p , two stress concentration areas appear at this stage, and the coal pillar is in the critical state of self-bearing stability; ③ when the width of the coal pillar W  >  W e , three stress concentration areas are present, and the coal pillar at this stage is in a self-bearing stable state. Among all these factors, only the size of coal pillar is completely controllable, so the aspects of safe bearing and reserved size design of coal pillar, after estimating the critical size of coal pillar, the coal pillar size design is carried out according to the mine pressure control needs of mining engineering, and the cohesion, internal friction angle, interlayer friction coefficient, and coal seam mining height are improved by artificial technology, so as to realize the resource safe and efficient mining of all kinds of coal seam mining conditions; in the calculation of wide coal pillar size, the advance mining stress concentration at the end of the self-working face should be taken as the mining load condition, and the reserved size meets the condition of W  >  W e , thereby ensuring the stable bearing of the wide coal pillar despite the advanced mining stress concentration during the self-working face mining; in the calculation of narrow coal pillar size, the lateral mining stress concentration before mining should be taken as the mining load condition and the reserved size meets the condition W  <  W p , thereby realizing the effective transfer of mining stress concentration to the roadway solid coal side.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3