Smartphone’s Sensing Capabilities for On-Board Railway Track Monitoring: Structural Performance and Geometrical Degradation Assessment

Author:

Paixão André12ORCID,Fortunato Eduardo1,Calçada Rui2

Affiliation:

1. Transportation Department, National Laboratory for Civil Engineering (LNEC), Lisbon 1700-066, Portugal

2. CONSTRUCT - LESE, Faculty of Engineering (FEUP), University of Porto, Porto 4200-465, Portugal

Abstract

Railway infrastructure managers run dedicated inspection vehicles to monitor the geometric quality of the track (among other aspects) to detect irregularities and ensure safe running conditions of railway lines, in accordance with specific regulations. Unfortunately, these inspections disturb the normal traffic operation, especially in networks with intense traffic; are generally carried out only a few times per year; and, consequently, do not provide prompt identification of critical situations. Considering the recent developments and cost reduction in sensing capabilities of smartphones, the authors present an approach to use these technologies to perform constant acceleration measurements inside in-service trains to complement the assessment of the structural performance and geometrical degradation of the tracks. Cross-correlation values above 0.85 were obtained between the standard deviations of the longitudinal level and the experimental vertical accelerations measured on-board a passenger train on an 11-km railway stretch. The results showed that the approach can be used to identify critical situations that affect the performance of the track, regarding passenger comfort, degradation rates, and risk of derailment. It may comprise a low-cost and crowdsourced complement to the general current practice of track geometric inspection by dedicated vehicles and contribute to an earlier detection of track malfunctions, consequently, to a more efficient maintenance planning and infrastructure management.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3