An Improved Gray Neural Network Method to Optimize Spatial and Temporal Characteristics Analysis of Land-Use Change

Author:

Yang Yang1ORCID,Wang Wei2ORCID,Qiao Jiajun1ORCID,Zhang Ershen1ORCID

Affiliation:

1. The College of Geography and Environmental Science, Henan University, Kaifeng 475004, China

2. School of Culture Industry and Tourism Management, Henan University, Kaifeng 475004, China

Abstract

In this article, the principles of the gray model and BP neural network model are analyzed, and the characteristics of land-use change and spatial and temporal distribution are studied in-depth, and at the same time, to explore the influence of land-use change on ESV, the relationship between the two is analyzed using gray correlation degree, and a mathematical model is constructed to maximize the benefits of the regional system, coupling economic and ecological benefits, combined with Geo SOS-FLUS model to achieve the optimization of land use. This article constructs a combined prediction model of a gray neural network. The gray differential equation parameters correspond to the weights and thresholds of the neural network, and the optimized parameters are determined by training the neural network to make it stable. Then the training results of the BP neural network are fitted with the results obtained from the gray GM (1.1) model. Finally, the prediction results of the three models, gray GM (1.1), BP God Meridian, and gray neural network model, are compared and analyzed. The global spatial autocorrelation and local spatial aggregation patterns of regional soil erosion and its erosion factors are analyzed using the Exploratory Spatial Data Analysis (ESDA) method in spatial measurement theory.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3