Affiliation:
1. Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
2. Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
Abstract
Purpose. Surgical site infection is one of the serious complications after lumbar fusion. Early prediction and timely intervention can reduce the harm to patients. The aims of this study were to construct and validate a machine learning model for predicting surgical site infection after posterior lumbar interbody fusion, to screen out the most important risk factors for surgical site infection, and to explore whether synthetic minority oversampling technique could improve the model performance. Method. This study reviewed 584 patients who underwent posterior lumbar interbody fusion for degenerative lumbar disease at our center from January 2019 to August 2021. Clinical information and laboratory test data were collected from the electronic medical records. The original dataset was divided into training set and validation set in a 1 : 1 ratio. Seven machine learning algorithms were used to develop predictive models; the training set of each model was resampled using synthetic minority oversampling technique. Finally, the model performance was assessed in the validation set. Results. Of the 584 patients, 33 (5.65%) occurred surgical site infection. Stepwise logistic regression showed that preoperative albumin level (OR 0.659, 95% CI 0.563-0.756), diabetes (OR 9.129, 95% CI 3.816-23.126), intraoperative dural tear (OR 8.436, 95% CI 2.729-25.334), and rheumatic disease (OR 8.471, 95% CI 1.743-39.567) were significant predictors associated with surgical site infection. The performance of the AdaBoost Classification Trees model was the best among the seven machine learning models, and synthetic minority oversampling technique improved the performance of all models. Conclusion. The prediction model we constructed based on machine learning and synthetic minority oversampling technique can accurately predict surgical site infection, which is conducive to clinical decision-making and optimization of perioperative management.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献