Construct and Validate a Predictive Model for Surgical Site Infection after Posterior Lumbar Interbody Fusion Based on Machine Learning Algorithm

Author:

Xiong Chuang1ORCID,Zhao Runhan1ORCID,Xu Jingtao1ORCID,Liang Hao1ORCID,Zhang Chao1ORCID,Zhao Zenghui1,Huang Tianji1ORCID,Luo Xiaoji12ORCID

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2. Orthopedic Laboratory of Chongqing Medical University, Chongqing, China

Abstract

Purpose. Surgical site infection is one of the serious complications after lumbar fusion. Early prediction and timely intervention can reduce the harm to patients. The aims of this study were to construct and validate a machine learning model for predicting surgical site infection after posterior lumbar interbody fusion, to screen out the most important risk factors for surgical site infection, and to explore whether synthetic minority oversampling technique could improve the model performance. Method. This study reviewed 584 patients who underwent posterior lumbar interbody fusion for degenerative lumbar disease at our center from January 2019 to August 2021. Clinical information and laboratory test data were collected from the electronic medical records. The original dataset was divided into training set and validation set in a 1 : 1 ratio. Seven machine learning algorithms were used to develop predictive models; the training set of each model was resampled using synthetic minority oversampling technique. Finally, the model performance was assessed in the validation set. Results. Of the 584 patients, 33 (5.65%) occurred surgical site infection. Stepwise logistic regression showed that preoperative albumin level (OR 0.659, 95% CI 0.563-0.756), diabetes (OR 9.129, 95% CI 3.816-23.126), intraoperative dural tear (OR 8.436, 95% CI 2.729-25.334), and rheumatic disease (OR 8.471, 95% CI 1.743-39.567) were significant predictors associated with surgical site infection. The performance of the AdaBoost Classification Trees model was the best among the seven machine learning models, and synthetic minority oversampling technique improved the performance of all models. Conclusion. The prediction model we constructed based on machine learning and synthetic minority oversampling technique can accurately predict surgical site infection, which is conducive to clinical decision-making and optimization of perioperative management.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3