Optimization and Corroboration of the Regulatory Pathway of p42.3 Protein in the Pathogenesis of Gastric Carcinoma

Author:

Hao Yibin1,Fan Tianli2,Nan Kejun3

Affiliation:

1. Zhengzhou Central Hospital, Zhengzhou, Henan 450007, China

2. Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China

3. Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China

Abstract

Aims. To optimize and verify the regulatory pathway of p42.3 in the pathogenesis of gastric carcinoma (GC) by intelligent algorithm.Methods. Bioinformatics methods were used to analyze the features of structural domain in p42.3 protein. Proteins with the same domains and similar functions to p42.3 were screened out for reference. The possible regulatory pathway of p42.3 was established by integrating the acting pathways of these proteins. Then, the similarity between the reference proteins and p42.3 protein was figured out by multiparameter weighted summation method. The calculation result was taken as the prior probability of the initial node in Bayesian network. Besides, the probability of occurrence in different pathways was calculated by conditional probability formula, and the one with the maximum probability was regarded as the most possible pathway of p42.3. Finally, molecular biological experiments were conducted to prove it.Results. In Bayesian network of p42.3, probability of the acting pathway “S100A11→RAGE→P38→MAPK→Microtubule-associated protein→Spindle protein→Centromere protein→Cell proliferation” was the biggest, and it was also validated by biological experiments.Conclusions. The possibly important role of p42.3 in the occurrence of gastric carcinoma was verified by theoretical analysis and preliminary test, helping in studying the relationship between p42.3 and gastric carcinoma.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3