Analog Circuit Design Optimization Based on Evolutionary Algorithms

Author:

Barari Mansour1,Karimi Hamid Reza2ORCID,Razaghian Farhad1

Affiliation:

1. Electrical Engineering Department, Islamic Azad University, South Tehran Branch, Tehran 11365/4435, Iran

2. Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Abstract

This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs). Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization) algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

Funder

Polish-Norwegian Research Programme

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Smart Optimisation Techniques for 6G-oriented Integrated Circuits Design;Mobile Networks and Applications;2024-05-16

2. Optimization Process by Generalized Genetic Algorithm;WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS;2024-04-18

3. A new hybrid CGPM-based algorithm for constrained nonlinear monotone equations with applications;Journal of Applied Mathematics and Computing;2023-12-13

4. Transfer Function Interpolation and Extrapolation: A fast AC analysis method for evolutionary circuit design;Information Sciences;2023-12

5. Graph Theory Based Machine Learning for Analog Circuit Design;2023 28th International Conference on Automation and Computing (ICAC);2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3