Atmospheric PM2.5Concentration Prediction Based on Time Series and Interactive Multiple Model Approach

Author:

Li Jihan1,Li Xiaoli12ORCID,Wang Kang1ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory for Urban Mass Transit, Beijing 100124, China

Abstract

Urbanization, industrialization, and regional economic integration have developed rapidly in China in recent years. Air pollution has attracted more and more attention. However, PM2.5is the main particulate matter in air pollution. Therefore, how to predict PM2.5accurately and effectively has become a concern of experts and scholars. For the problem, atmosphere PM2.5concentration prediction algorithm is proposed based on time series and interactive multiple model in this paper. PM2.5concentration is collected by using the monitor at different air quality levels. The time series models are established by historical PM2.5concentration data, which were given by the autoregressive model (AR). In the paper, three PM2.5time series models are established for three different air quality levels. Then, the three models are converted to state equation, respectively, by autoregressive integrated with Kalman filter (AR-Kalman) approaches. Besides, the proposed interactive multiple model (IMM) algorithm is, respectively, compared with autoregressive (AR) model algorithm and AR-Kalman prediction algorithm. It is turned out the proposed IMM algorithm is more accurate than the other two approaches for PM2.5prediction, and it is effective.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3