Affiliation:
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Laboratory for Urban Mass Transit, Beijing 100124, China
Abstract
Urbanization, industrialization, and regional economic integration have developed rapidly in China in recent years. Air pollution has attracted more and more attention. However, PM2.5is the main particulate matter in air pollution. Therefore, how to predict PM2.5accurately and effectively has become a concern of experts and scholars. For the problem, atmosphere PM2.5concentration prediction algorithm is proposed based on time series and interactive multiple model in this paper. PM2.5concentration is collected by using the monitor at different air quality levels. The time series models are established by historical PM2.5concentration data, which were given by the autoregressive model (AR). In the paper, three PM2.5time series models are established for three different air quality levels. Then, the three models are converted to state equation, respectively, by autoregressive integrated with Kalman filter (AR-Kalman) approaches. Besides, the proposed interactive multiple model (IMM) algorithm is, respectively, compared with autoregressive (AR) model algorithm and AR-Kalman prediction algorithm. It is turned out the proposed IMM algorithm is more accurate than the other two approaches for PM2.5prediction, and it is effective.
Funder
National Natural Science Foundation of China
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献