Healthcare Data Security Using IoT Sensors Based on Random Hashing Mechanism

Author:

Khadidos Adil O.1ORCID,Shitharth S.2ORCID,Khadidos Alaa O.3ORCID,Sangeetha K.2,Alyoubi Khaled H.3

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Computer Science and Engineering, Kebri Dehar University, Kebri Dehar 250, Ethiopia

3. Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Providing security to the healthcare data stored in an IoT-cloud environment is one of the most challenging and demanding tasks in recent days. Because the IoT-cloud framework is constructed with an enormous number of sensors that are used to generate a massive amount of data, however, it is more susceptible to vulnerabilities and attacks, which degrades the security level of the network by performing malicious activities. Hence, Artificial Intelligence (AI) technology is the most suitable option for healthcare applications because it provides the best solution for improving the security and reliability of data. Due to this fact, various AI-based security mechanisms are implemented in the conventional works for the IoT-cloud framework. However, it faces significant problems of increased complexity in algorithm design, inefficient data handling, not being suitable for processing the unstructured data, increased cost of IoT sensors, and more time consumption. Therefore, this paper proposed an AI-based intelligent feature learning mechanism named Probabilistic Super Learning- (PSL-) Random Hashing (RH) for improving the security of healthcare data stored in IoT-cloud. Also, this paper is aimed at reducing the cost of IoT sensors by implementing the proposed learning model. Here, the training model has been maintained for detecting the attacks at the initial stage, where the properties of the reported attack are updated for learning the characteristics of attacks. In addition to that, the random key is generated based on the hash value of the data matrix, which is incorporated with the standard Elliptic Curve Cryptography (ECC) technique for data security. Then, the enhanced ECC-RH mechanism performs the data encryption and decryption processes with the generated random hash key. During performance evaluation, the results of both existing and proposed techniques are validated and compared using different performance indicators.

Funder

King Abdulaziz University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3