Ageing-Associated Transcriptomic Alterations in Peri-Implantitis Pathology: A Bioinformatic Study

Author:

Tian Zhaojun1ORCID

Affiliation:

1. College of Dentistry, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street, No. 2с4, Moscow 119435, Russia

Abstract

Background. Ageing is associated with increased incidence of peri-implantitis but the roles of ageing-associated biological mechanisms in the occurrence of peri-implantitis are not known. This study is aimed at performing integrative bioinformatic analysis of publically available datasets to uncover molecular mechanisms related to ageing and peri-implantitis. Methods. Gene expression datasets related to ageing and peri-implantitis (PI) were sought, and differentially expressed genes (DEGs) were analysed. Ageing-related genes were also identified from the “Aging Atlas” database. Using intersection analysis, an age-related-PI gene set was identified. Functional enrichment analysis for enriched GO biological process and KEGG pathways, protein-protein interaction (PPI) network analysis, correlation analysis, and immune cell infiltration analysis to determine high-abundance immune cells were performed. Least absolute shrinkage and selection operator (LASSO) logistic regression identified key age-related-PI genes. Transcription factor-gene and drug-gene interactions and enriched KEGG pathways for the key age-related-PI genes were determined. Results. A total of 52 genes were identified as age-related-PI genes and found enriched in several inflammation-associated processes including myeloid leukocyte activation, acute inflammatory response, mononuclear cell differentiation, B cell activation, NF-kappa B signalling, IL-17 signalling, and TNF signalling. LYN, CDKN2A, MAPT, BTK, and PRKCB were hub genes in the PPI network. Immune cell infiltration analysis showed activated dendritic cells, central memory CD4 T cells, immature dendritic cells, and plasmacytoid dendritic cells were highly abundant in PI and ageing. 7 key age-related PI genes including ALOX5AP, EAF2, FAM46C, GZMK, MAPT, RGS1, and SOSTDC1 were identified using LASSO with high predictive values and found to be enriched in multiple neurodegeneration-associated pathways, MAPK signalling, and Fc epsilon RI signalling. MAPT and ALOX5AP were associated with multiple drugs and transcription factors and interacted with other age-related genes to regulate multiple biological pathways. Conclusion. A suite of bioinformatics analysis identified a 7-signature gene set highly relevant to cooccurrence of ageing and peri-implantitis and highlighted the role of neurodegeneration, autoimmune, and inflammation related pathways. MAPT and ALOX5AP were identified as key candidate target genes for clinical translation.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3