3D Input Convolutional Neural Network for SSVEP Classification in Design of Brain Computer Interface for Patient User

Author:

Oralhan Zeki1ORCID,Oralhan Burcu2,Khayyat Manal M.3ORCID,Abdel-Khalek Sayed4ORCID,Mansour Romany F.5ORCID

Affiliation:

1. Department of Electrical Electronics Engineering, Nuh Naci Yazgan University, 38090 Kayseri, Turkey

2. Department of Business Administration, Nuh Naci Yazgan University, 38090 Kayseri, Turkey

3. Computer Science Department, Deanship of Preparatory Year of the Joint Medical Track, Umm Al-Qura University, Makkah, Saudi Arabia

4. Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

5. Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt

Abstract

This research was aimed at presenting performance of 3-dimensional input convolutional neural networks for steady-state visual evoked potential classification in a wireless EEG-based brain-computer interface system. Overall performance of a brain-computer interface system depends on information transfer rate. Parameters such as signal classification accuracy rate, signal stimulator structure, and user task completion time affect information transfer rate. In this study, we used 3 types of signal classification methods that are 1-dimensional, 2-dimensional, and 3-dimensional input convolutional neural network. According to online experiment with using 3-dimensional input convolutional neural network, we reached average classification accuracy rate and average information transfer rate as 93.75% and 58.35 bit/min, respectively. This both results significantly higher than the other methods that we used in experiments. Moreover, user task completion time was reduced with using 3-dimensional input convolutional neural network. Our proposed method is novel and state-of-art model for steady-state visual evoked potential classification.

Funder

Umm Al-Qura University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3