Detection of the Driver’s Mental Workload Level in Smart and Autonomous Systems Using Physiological Signals

Author:

Wang Dan1,Lin Yier1ORCID,Hong Liang1,Zhang Ce1,Bai Yajie1,Bi Zhen Zhen1

Affiliation:

1. School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China

Abstract

With the continuous advancement of automation technology, autonomous driving assistance systems are gradually sharing the tasks during driving, but the driver still assumes the main driving tasks. In addition to driving activities, the advent of numerous new functions will have an indirect impact on the driver’s mental effort. However, determining the driver’s mental effort remains a difficult issue. In this paper, a method is proposed to assess the mental workload of drivers, combining real driver’s physiological data with the speed of his/her vehicle. The correlation coefficient and significance level are obtained by analyzing the correlation between physiological data and road types. The relevant data is then preprocessed to determine the characteristic index, with the mental workload as the input index. The driver’s mental workload is classified and the mental workload prediction model is constructed on the basis of the combination of the Fuzzy Pattern Recognition Algorithm and Genetic Algorithm. At the same time, the suggested approach is compared to the J48 Classification Algorithm and the Simulated Annealing Optimization Algorithm. The results demonstrate that the proposed method in this paper’s effectiveness for identifying the driver’s mental workload level is evidently better than other algorithms, which provides new theoretical support for assessing the L3+ driver’s mental workload level under the background of the safety of the intended functionality when they take over the control of the drive.

Funder

Natural Science Basic Research Plan in Shanxi Province of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3